If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-40y=80
We move all terms to the left:
5y^2-40y-(80)=0
a = 5; b = -40; c = -80;
Δ = b2-4ac
Δ = -402-4·5·(-80)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40\sqrt{2}}{2*5}=\frac{40-40\sqrt{2}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40\sqrt{2}}{2*5}=\frac{40+40\sqrt{2}}{10} $
| 2x+5=1.5x | | -8+6x=x-23 | | e+2e+e+6e=-18 | | 5a=10-a | | 11+3x+19+x+5x+2=180 | | y-0.8y=40 | | 5(x-4)=2x-14 | | 113.04=3.14*x | | x+38=2x-7 | | (1/8)^5x=32x+8 | | 28.26=3.14*x | | 1/10^n=10000 | | O.66=r | | 14=5+d | | 12=10+u | | 1=1+u | | 13+p=18 | | 13=p=18 | | 17+u=28 | | 19q+q=23 | | 350=100n+50 | | 3/5n+4=10 | | 1/5n-10=10 | | 16.3-0.2x=7 | | F(-8)=3x-5x | | 4(6x-5)=31 | | 2/t=80/150 | | 41.50+3x=48.40 | | 3x+41.50=48.40 | | 3/8=45/w | | x/2=4/x-1 | | Z=-8-7i |